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Abstract For flows with a conformal hyperbolic set, we establish a conditional variational
principle for the dimension spectra of Hölder continuous functions. We consider simultane-
ously Birkhoff averages into the future and into the past. We emphasize that the description
of the spectra is not a consequence of the existing results for Birkhoff averages into the fu-
ture (or into the past). The main difficulty is that even though the local product structure is
bi-Lipschitz, the level sets of the Birkhoff averages are never compact. Our proof is based
on the use of Markov systems and is inspired in earlier arguments in the case of discrete
time.

Keywords Dimension spectrum · Hyperbolic flow

1 Introduction

1.1 Multifractal Analysis and Dimension Spectra

The theory of multifractal analysis can be considered a subfield of the dimension theory of
dynamical systems. Essentially, it studies the complexity of the level sets of invariant local
quantities obtained from a dynamical system. In particular, we can consider Birkhoff aver-
ages, Lyapunov exponents, pointwise dimensions, and local entropies. We emphasize that
these functions are usually only measurable and thus their level sets are rarely manifolds.
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Hence, in order to measure their complexity it is appropriate to use quantities such as the
topological entropy or the Hausdorff dimension. The concept of multifractal analysis was
suggested by Halsey, Jensen, Kadanoff, Procaccia and Shraiman in [18]. The first rigorous
approach is due to Collet, Lebowitz and Porzio in [12] for a class of measures invariant under
one-dimensional Markov maps. In [30], Lopes considered the measure of maximal entropy
for hyperbolic Julia sets, and in [39], Rand studied Gibbs measures for a class of repellers.
We refer the reader to the books [1, 35] for further references and detailed expositions of
parts of the theory.

We briefly recall the main components of multifractal analysis. Let � = (ϕt )t∈R be a flow
in M preserving a finite measure μ. By Birkhoff’s ergodic theorem, for each μ-integrable
function a : M → R the limit

a�(x) = lim
t→∞

1

t

∫ t

0
a(ϕs(x)) ds

exists for μ-almost every x ∈ M . For each α ∈ R we consider the level set

K+
α (a) = {x ∈ M : a�(x) = α},

i.e., the set of points x ∈ M such that a�(x) is well-defined and is equal to α. We also
consider the set

K(a) =
{
x ∈ M : lim inf

t→∞
1

t

∫ t

0
a(ϕs(x)) ds < lim sup

t→∞
1

t

∫ t

0
a(ϕs(x)) ds

}
.

Clearly,

M = K(a) ∪
⋃
α∈R

K+
α (a). (1)

We call the decomposition of M in (1) a multifractal decomposition. One way to measure
the complexity of the sets K+

α (a) is to compute their Hausdorff dimension. Namely, the
dimension spectrum

D : {α ∈ R : K+
α (a) �= ∅} → R

is defined by

D(α) = dimH K+
α (a),

where dimH A denotes the Hausdorff dimension of the set A. The dimension spectra of con-
formal hyperbolic sets of a flow were described by Pesin and Sadovskaya in [36]. One can
also consider other characteristics to measure the complexity of the level sets. For example,
we obtain the entropy spectra by considering the topological entropy of � in K+

α (a). The
entropy spectra of hyperbolic sets of a flow were described by Barreira and Saussol in [7].

Our main objective is to give a complete description of the dimension spectra of Birkhoff
averages in a conformal locally maximal hyperbolic set of a flow, taking simultaneously into
account Birkhoff averages into the future and into the past. More precisely, the spectra that
we consider are obtained by computing the Hausdorff dimension of the level sets of Birkhoff
averages of a given function both for positive and negative time. Namely, we also consider
the level sets

K−
β (b) =

{
x ∈ M : lim

t→−∞
1

t

∫ t

0
b(ϕs(x)) ds = β

}
.
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Our main aim is thus to describe the multifractal spectrum

(α,β) �→ dimH (K+
α (a) ∩ K−

β (b)),

and in particular to show that it is analytic in the interior of its domain (see Theorem 1). For
flows with a conformal locally maximal hyperbolic set, using the fact that the stable (respec-
tively unstable) local manifold of a given point has exactly the same future Birkhoff average
(respectively past Birkhoff average) of that point, we show that the level sets K+

α (a)∩K−
β (b)

have a local product structure (in the same manner as the hyperbolic set does). This is the
main observation that allows us to use a conditional variational principle in [2] to describe
the dimension spectrum. On the other hand, the main difficulty is that the level sets are not
compact. This leads to the construction of noninvariant measures concentrated on each level
set and with the appropriate pointwise dimension. We also consider the higher-dimensional
case of more than one Birkhoff average, as well as the case of ratios of Birkhoff averages.

We note that Theorem 1 was formulated earlier in [2] but there is a gap in the proof
(more precisely in the proof of Theorem 14). We now present an alternative proof based on
arguments of Barreira and Valls in [9], using also results of Barreira and Saussol in [7]. This
fixes the gap in [2].

1.2 Multifractal Analysis and Statistical Mechanics

We discuss in this section a few selected topics illustrating the relevance of multifractal
analysis for statistical mechanics, while also referring to a few recent works.

We first mention that one can consider several statistical models defined in terms of Farey
fractions. For example, following [13], among other models one can consider the so-called
Farey fraction spin chain. This is a one-dimensional statistical model proposed by Kleban
and Özlük in [29], which can be described as a periodic chain of sites with two possible spin
states at each site. We note that the model allows phase transitions. On the other hand, it is
well know that Farey fractions appear in connection with the study of multifractals associ-
ated to some chaotic maps exhibiting intermittency. From the mathematical point of view,
this is also related to the study of nonuniformly hyperbolic systems and countable topolog-
ical Markov chains. It turns out that for uniformly hyperbolic systems and their codings by
finite topological Markov chains the dimension and entropy spectra of an equilibrium mea-
sure of a Hölder continuous function has bounded domain and is analytic. In strong contrast,
in the case of nonuniformly hyperbolic systems and countable topological Markov chains
the spectrum may have unbounded domain and need not be analytic. In [38], Pollicott and
Weiss presented a multifractal analysis of the Lyapunov exponent for the Gauss map and
for the Manneville–Pomeau transformation. Related results were obtained by Yuri in [48].
In [31–33], Mauldin and Urbański developed the theory of infinite conformal iterated func-
tion systems, studying in particular the Hausdorff dimension of the limit set (see also [19]).
Related results were obtained by Nakaishi in [34]. In [28], Kesseböhmer and Stratmann
established a detailed multifractal analysis for Stern–Brocot intervals, continued fractions,
and certain Diophantine growth rates, building on their former work [27]. In particular,
they discussed multifractal spectra closely related to the Farey map and to the Gauss map.
We refer to [37] for other results concerning Farey trees and multifractal analysis. In [21],
Iommi obtained a detailed multifractal analysis for countable topological Markov chains,
using the so-called Gurevich pressure introduced by Sarig in [43] (building on former work
of Gurevich [17] on the notion of topological entropy for countable Markov chains). In [3],
Barreira and Iommi considered the case of suspension flows over a countable topological
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Markov chain, building also on work of Savchenko [44] on the notion of topological en-
tropy. In [22], Iommi and Skorulski studied the multifractal analysis of conformal measures
for the exponential family z �→ λez with λ ∈ (0,1/e) (we note that in this setting the Julia
set J is not compact and that the dynamics is not Markov on J ). They use a construction
described by Urbański and Zdunik in [45].

Another direction of research is related to the so-called multifractal rigidity, which uses
the notion of topological pressure introduced by Ruelle in [41] for expansive maps, and by
Walters in [46] in the general case. Namely, it is believed by some specialists (see for exam-
ple [35]) that the information encoded by the multifractal spectra can be used to recover the
potential and somehow also the dynamics (possibly up to some appropriate equivalence).
This is essentially due to a relation that often occurs between a multifractal spectrum and a
certain function obtained from the potential using the topological pressure (see Sect. 2 for
the definitions). Namely, in some situations these two functions form a Legendre pair, and
this allows one to try to obtain information about the potential (perhaps up to some equiva-
lence) from the information encoded in the multifractal spectrum (see [1, 35] for introduc-
tions to the theory of multifractal analysis, and for the description of some recent results).
This approach is particularly welcome when the multifractal spectra can be determined with
arbitrary precision, while this may not be the case with the dynamical system, which may
not be known a priori or at least may not be known with arbitrary precision. We remark that
instead of dealing with local quantities associated to a given trajectory, we deal here with
quantities of global nature, which are encoded in the multifractal spectra. The phenomenon
of multifractal rigidity occurs when for two topologically equivalent dynamical systems with
identical multifractal spectra, the original potentials are equivalent (in some sense that needs
to be made precise in each case, for example up to some conjugacy of the dynamics). This
leads to a “multifractal classification” of the dynamics (either invertible or noninvertible) in
terms of the multifractal spectra, and we may be able to recover information about a poten-
tial from the information encoded in its multifractal spectra. Related results were obtained
by Barreira, Pesin and Schmeling in [4, 5] for some classes of uniformly hyperbolic dynam-
ical systems. We note that, in general, when we use a single spectrum there is no multifractal
rigidity even for topological Markov chains with 3 symbols (see [6]). However, this does not
forbid the occurrence of the multifractal rigidity phenomenon for other classes of potentials
and other classes of dynamics. We refer to [1] for a related detailed discussion.

In another direction, in [16] Frisch and Matsumoto established the multifractality of the
Feigenbaum invariant measure appearing at the accumulation point of the period doubling
cascade. They also used a thermodynamic formalism. More recently, in [15] Frisch, Khanin
and Matsumoto also considered this measure and they provided numerical evidence that
some related fractional derivatives have power-law tails in their cumulative distributions,
whose exponents are related to what they call the spectrum of singularities. A related math-
ematical theory that bears some resemblance is due to Jaffard in [23, 24] who developed
a multifractal analysis for functions, essentially looking at the best Hölder exponent of a
function at each given point. In this respect, we also want to mention the two papers [25, 26]
by Jaffard and Mélot developing tools to study the local behavior of the boundary of a do-
main in a finite-dimensional space. In particular, they study the boundary in terms of the
dimension of certain level subsets. Again their approach bears a resemblance to the more
standard multifractal analysis involving the thermodynamic formalism.

Still in another direction, Fisch studied in [14] the ground state entropy of the 2D Ising
spin glass with +1 and −1 bonds for L × M square lattices and with fraction of negative
bonds equal to 0.5, using periodic and/or antiperiodic boundary conditions. He obtained
the domain wall entropy as a function of L and M . For the zero-energy domain walls, he
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argued that the probability distribution of the domain wall entropy is multifractal, as M/Ld

becomes large with d = 1.22 ± 0.01, as a result of disorder-induced localization.

2 Basic Notions of the Thermodynamic Formalism

2.1 Topological Pressure and Entropy

We recall several basic notions of the thermodynamic formalism for flows. We refer to
[7, 42, 47] for details.

Let � = (ϕt )t∈R be a continuous flow in a compact metric space (X,d). Given x ∈ X,
t > 0, and ε > 0, we define

Bε(x, t) = {
y ∈ X : d(ϕs(y),ϕs(x)) < ε for every s ∈ [0, t]}.

Now let a : X → R be a continuous function. We write

a(x, t, ε) = sup

{∫ t

0
a(ϕs(y)) ds : y ∈ Bε(x, t)

}
. (2)

Given a set Z ⊂ X and α ∈ R, we define

M(Z,a,α, ε) = lim
T →∞

inf
�

∑
(x,t)∈�

exp
[
a(x, t, ε) − αt

]
,

where the infimum is taken over all finite or countable sets � = {(xi, ti)}i∈I such that xi ∈ X

and ti ≥ T for every i ∈ I , with
⋃

i∈I Bε(xi, ti ) ⊃ Z. One can show that the limit

P�(a|Z) := lim
ε→0

inf
{
α ∈ R : M(Z,a,α, ε) = 0

}

exists. The number P�(a|Z) is called the topological pressure of a on the set Z (with respect
to the flow �). We also write P�(a) = P�(a|X). The number h(�|Z) = P�(0|Z) is called
the topological entropy of � on Z.

Now we consider the set M�(X) of all �-invariant probability measures in X. We recall
that a measure μ in X is said to be �-invariant if μ(ϕt (A)) = μ(A) for every t ∈ R and
every measurable set A ⊂ X. With the weak∗ topology the space M�(X) is compact and
metrizable. A measure μ in X is said to be ergodic if for every �-invariant set A ⊂ X (i.e.,
such that ϕt (A) = A for every t ∈ R) we have μ(A) = 0 or μ(X \ A) = 0. We define

h(Z, ε) = inf
{
α ∈ R : M(Z,0, α, ε) = 0

}
. (3)

One can show that for each measure μ ∈ M�(X) the limit

hμ(�) := lim
ε→0

inf
{
h(Z, ε) : μ(Z) = 1

}
(4)

exists. Moreover, we have the following result.

Proposition 1 If � is a continuous flow in a compact metric space X, and μ ∈ M�(X) is
ergodic, then hμ(�) coincides with the Kolmogorov–Sinai entropy of � with respect to μ.
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Therefore, in the case of ergodic measures we can use (3)–(4) to compute the entropy.
An analogous statement in the case of discrete time was established by Pesin in [35, Theo-
rem 11.6]. The proof of Proposition 1 is a simple modification of the proof of that statement
and hence it is not given here.

We also recall the variational principle for the topological pressure.

Proposition 2 If � is a continuous flow in a compact metric space X, and a : X → R is a
continuous function, then

P�(a) = sup

{
hμ(�) +

∫
X

a dμ : μ ∈ M�(X)

}
. (5)

A measure μ ∈ M�(X) is called an equilibrium measure for the function a (with respect
to the flow �) if the supremum in (5) is attained at this measure, i.e., if

P�(a) = hμ(�) +
∫

X

a dμ.

2.2 u-dimension

Now we recall a Carathéodory dimensional characteristic introduced by Barreira and Saus-
sol in [7]. This notion is a generalization of the topological entropy, and is also a version of
the Carathéodory dimensional characteristic introduced by Barreira and Schmeling in [8] in
the case of discrete time.

Let � be a continuous flow in a compact metric space X, and let u : X → R be a positive
continuous function. Given a set Z ⊂ X and α ∈ R, we define

N(Z,u,α, ε) = lim
T →∞

inf
�

∑
(x,t)∈�

exp(−αu(x, t, ε)),

with u(x, t, ε) as in (2), where the infimum is taken over all finite or countable sets � =
{(xi, ti)}i∈I such that xi ∈ X and ti ≥ T for every i ∈ I , with

⋃
i∈I Bε(xi, ti) ⊃ Z. We also

define

dimu,εZ = inf
{
α ∈ R : N(Z,u,α, ε) = 0

}
.

One can show that the limit

dimuZ := lim
ε→0

dimu,εZ

exists. The number dimuZ is called the u-dimension of the set Z (with respect to u). Clearly,
when u = 1 we have dimuZ = h(�|Z).

It follows easily from the definitions that the topological pressure and the u-dimension
are related as follows.

Proposition 3 We have P�(−αu|Z) = 0 if and only if α = dimuZ.

For each probability measure μ in X, we define

dimu,εμ = inf
{
dimu,εZ : μ(Z) = 1

}
.
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One can show that the limit

dimuμ := lim
ε→0

dimu,εμ

exists. The number dimuμ is called the u-dimension of μ (with respect to u). For each
ergodic measure μ ∈ M�(X) we have

dimuμ = hμ(�)
/∫

X

udμ.

The proof of this identity can be obtained in an analogous manner to the one in the case of
discrete time in [8].

3 Hyperbolic Flows and Multifractal Spectra

3.1 Basic Notions

Given a C1 flow � = (ϕt )t∈R in a smooth manifold M , a compact �-invariant set 	 ⊂ M is
said to be hyperbolic (for the flow �) if there are a decomposition

T	M = Es ⊕ Eu ⊕ E0,

and constants c > 0 and λ ∈ (0,1) such that for every x ∈ 	:

1. the vector d
dt

(ϕt (x))|t=0 generates E0(x);
2. for every t ∈ R we have

dxϕtE
s(x) = Es(ϕt (x)) and dxϕtE

u(x) = Eu(ϕt (x));
3. ‖dxϕtv‖ ≤ cλt‖v‖ for every v ∈ Es(x) and t > 0;
4. ‖dxϕ−t v‖ ≤ cλt‖v‖ for every v ∈ Eu(x) and t > 0.

For example, for any geodesic flow in a compact Riemannian manifold with negative sec-
tional curvature the unit tangent bundle is a hyperbolic set. Moreover, time-changes and
small C1 perturbations of flows with a hyperbolic set have also a hyperbolic set.

We say that a hyperbolic set 	 (for the flow �) is locally maximal if it has an open
neighborhood U such that 	 = ⋂

t∈R
ϕt (U). The flow � is said to be topologically mix-

ing on 	 if for any nonempty open sets U and V intersecting 	, there exists t ∈ R such
that ϕs(U) ∩ V ∩ 	 �= ∅ for every s > t . Finally, a function a : 	 → R is said to be �-
cohomologous to a function b : 	 → R if there is a bounded measurable function q : 	 → R

such that

a(x) − b(x) = lim
t→0

q(ϕt (x)) − q(x)

t
(6)

for every x ∈ 	, in which case P�(a) = P�(b).
We have the following properties (see [42, 47]).

Proposition 4 For a C1 flow �, let 	 be a locally maximal hyperbolic set such that � is
topologically mixing on 	. Then:

1. the function μ �→ hμ(�) is upper semi-continuous in M�(	);
2. each Hölder continuous function a : 	 → R has a unique equilibrium measure;
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3. given Hölder continuous functions a, b : 	 → R, the function R � t �→ P�(a + tb) is
analytic, and for each t ∈ R we have

d2

dt2
P�(a + tb) ≥ 0,

with equality if and only if b is �-cohomologous to a constant.

3.2 Multifractal Spectra

We denote by Cδ(	) the space of Hölder continuous functions in 	 with Hölder exponent
δ ∈ (0,1]. Given d ∈ N we set F(	) = Cδ(	)d × Cδ(	)d . Now we consider vectors

A = (a1, . . . , ad) and B = (b1, . . . , bd),

in F(	), with bi > 0 for i = 1, . . . , d (for simplicity we simply write B > 0). Given α =
(α1, . . . , αd) ∈ R

d we set

Kα =
d⋂

i=1

{
x ∈ 	 : lim

t→∞

∫ t

0 ai(ϕs(x))ds∫ t

0 bi(ϕs(x))ds
= αi

}
.

Now let u : 	 → R be a positive continuous function. We define the u-dimension spectrum
Fu : R

d → R of the pair (A,B) (with respect to �) by

Fu(α) = dimuKα.

We also consider the function P : M�(	) → R
d defined by

P(μ) =
(∫

	
a1 dμ∫

	
b1 dμ

, . . . ,

∫
	

ad dμ∫
	

bd dμ

)
.

Finally, given α = (α1, . . . , αd) and β = (β1, . . . , βd) in R
d we write

α ∗ β = (α1β1, . . . , αdβd) ∈ R
d and 〈α,β〉 =

d∑
i=1

αiβi ∈ R.

The following result was established in [2]. In particular, it provides a conditional variational
principle for the spectrum Fu.

Proposition 5 (See [2, Theorems 6 and 10]) Let � be a C1 flow with a locally maximal
hyperbolic set 	 on which � is topologically mixing, and let (A,B) ∈ F(	) with B > 0
and u ∈ Cδ(	) with u > 0. If α ∈ intP(M�(	)), then Kα �= ∅ and the following properties
hold:

1. Fu(α) satisfies the conditional variational principle

Fu(α) = max

{
hμ(�)∫
	

udμ
: μ ∈ M�(	) and P(μ) = α

}
;

2. Fu(α) = min{Tu(α, q) : q ∈ R
d}, where Tu(α, q) is the unique real number such that

P�(〈q,A − α ∗ B〉 − Tu(α, q)u) = 0;
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3. there exists an ergodic measure μα ∈ M�(	) such that P(μα) = α, μα(Kα) = 1, and
dimuμα = Fu(α).

Moreover, the spectrum Fu is analytic in intP(M�(	)).

4 Dimension Spectra

4.1 Main Result

Let � = (ϕt )t∈R be a C1 flow in a smooth manifold M and let 	 ⊂ M be a hyperbolic set.
The flow � is said to be conformal on 	 if the maps

dxϕt |Es(x) : Es(x) → Es(ϕt (x)) and dxϕt |Eu(x) : Eu(x) → Eu(ϕt (x))

are multiples of isometries for every x ∈ 	 and t ∈ R. We shall consider the functions

v(x) = ∂

∂t
log‖dxϕt |Eu(x)‖

∣∣∣
t=0

and

w(x) = − ∂

∂t
log‖dxϕt |Es(x)‖

∣∣∣
t=0

.

Given pairs of functions (A±,B±) ∈ F(	) (with the symbols + and − corresponding
respectively to the future and to the past), we write

A+ = (a+
1 , . . . , a+

d ), B+ = (b+
1 , . . . , b+

d ),

and

A− = (a−
1 , . . . , a−

d ), B− = (b−
1 , . . . , b−

d ).

We assume that B± > 0. Given α = (α1, . . . , αd) and β = (β1, . . . , βd) in R
d , we set

K+
α =

d⋂
i=1

{
x ∈ 	 : lim

t→+∞

∫ t

0 a+
i (ϕs(x)) ds∫ t

0 b+
i (ϕs(x)) ds

= αi

}
,

and

K−
β =

d⋂
i=1

{
x ∈ 	 : lim

t→−∞

∫ t

0 a−
i (ϕs(x)) ds∫ t

0 b−
i (ϕs(x)) ds

= βi

}
.

The dimension spectrum D : R
d × R

d → R is defined by

D(α,β) = dimH (K+
α ∩ K−

β ).

The following is our main result.

Theorem 1 Let 	 be a locally maximal hyperbolic set of a C1+α flow � such that � is
topologically mixing and conformal on 	, and let (A±,B±) ∈ F(	). Then the following
properties hold:
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1. if

α ∈ intP+(M�(	)) and β ∈ intP−(M�(	)), (7)

then

D(α,β) = dimH K+
α + dimH K−

β − dimH 	

= max

{
hμ(�)∫
	

v dμ
: μ ∈ M�(	) and P+(μ) = α

}

+ max

{
hμ(f )∫
	

w dμ
: μ ∈ M�(	) and P−(μ) = β

}
+ 1;

2. the spectrum D is analytic in intP+(M�(	)) × intP−(M�(	)).

We separate the proof of Theorem 1 into several steps. In the remaining sections the
assumptions in the theorem are standing assumptions.

4.2 Preliminary Results

For each x ∈ 	 there exist local stable and unstable manifolds V s(x) and V u(x) contain-
ing x such that:

1. TxV
s(x) = Es(x) and TxV

u(x) = Eu(x);
2. for every t > 0 we have

ϕt (V
s(x)) ⊂ V s(ϕt (x)) and ϕ−t (V

u(x)) ⊂ V u(ϕ−t (x));
3. there exist κ > 0 and μ ∈ (0,1) such that for every t > 0 we have

d(ϕt (y),ϕt (x)) ≤ κμtd(y, x) if y ∈ V s(x), (8)

and

d(ϕ−t (y), ϕ−t (x)) ≤ κμtd(y, x) if y ∈ V u(x).

The following is a preliminary result along stable and unstable manifolds.

Lemma 1 For each α,β ∈ R
d , x+ ∈ K+

α , and x− ∈ K−
β we have

dimH K+
α = dimH (K+

α ∩ V u(x+)) + ts + 1 = dimvK
+
α + ts + 1,

and

dimH K−
β = dimH (K−

β ∩ V s(x−)) + tu + 1 = dimwK−
β + tu + 1,

where ts and tu are the unique real numbers such that

P�|	(−tsv) = P�|	(−tuw) = 0.

Proof It follows easily from (8) and the uniform continuity of a±
i and b±

i in 	 that V s(x) ⊂
K+

α for every x ∈ K+
α , and thus also

⋃
t∈R

ϕt (V
s(x)) ⊂ K+

α

for every x ∈ K+
α , since the set K+

α is �-invariant.
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Since � is conformal on 	, it follows from results of Hasselblatt in [20] that the distrib-
utions x �→ Es(x)⊕E0(x) and x �→ Eu(x) are Lipschitz. Therefore, for a sufficiently small
open neighborhood of a point x ∈ K+

α there is a Lipschitz map with Lipschitz inverse from
the set K+

α to
⋃
t∈I

ϕt (V
s(x)) × V u(x),

where I is an open interval containing zero. This implies that

dimH K+
α = dimH (K+

α ∩ V u(x)) + ts + 1,

since the Hausdorff dimension and the upper box dimension of K+
α ∩ V u(x) coincide (due

to the conformality of � on 	).
For the second identity, we note that

∫ t

0
v(ϕsx) ds = log‖dxϕt |Eu(x)‖.

Since the distribution x �→ Eu(x) is Lipschitz and � is of class C1+α , the function v is
Hölder continuous and for each ε > 0 there exist constants c1, c2 > 0 such that

c1 exp(−αv(x, t, ε)) ≤ [diam(Bε(x, t) ∩ V u(x))]α ≤ c2 exp(−αv(x, t, ε)).

By the definition of Hausdorff dimension, this readily implies that for every set Z ⊂ 	 we
have

dimH (Z ∩ V u(x)) = dimvZ.

To obtain the second identity in the lemma we take Z = K+
α .

The arguments for K−
β are entirely analogous. �

4.3 Markov Systems and Reduction to Discrete Time

We need some additional material for the remaining arguments of the proof.
Since 	 is locally maximal, for each sufficiently small ε > 0, there exists δ > 0 such that

if x, y ∈ 	 are at a distance d(x, y) ≤ δ, then there exists a unique t = t (x, y) ∈ [−ε, ε]
such that the set [x, y] := V s(ϕt (x)) ∩ V u(y) consists of a single point in 	.

Let D ⊂ M be an open disk of dimension dimM − 1 which is transverse to the flow �.
Given x ∈ D, there exists a diffeomorphism from D × (−ε, ε) onto an open neighborhood
U(x) of x. The projection map πD : U(x) → D defined by πD(ϕt (y)) = y is differentiable.

A closed set R ⊂ 	∩D is called a rectangle if R = intR (where the interior is computed
with respect to the induced topology in 	 ∩ D), and πD([x, y]) ∈ R whenever x, y ∈ R.
Consider a collection of rectangles R1, . . . ,Rp ⊂ 	 (each contained in some disk transverse
to the flow) with Ri ∩ Rj = ∂Ri ∩ ∂Rj whenever i �= j , and assume that there exists ε > 0
such that:

1. 	 = ⋃
t∈[0,ε] ϕt(P ), where P = ⋃p

i=1 Ri ;
2. for each i �= j either ϕt(Ri)∩Rj = ∅ for all t ∈ [0, ε] or ϕt(Rj )∩Ri = ∅ for all t ∈ [0, ε].
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We define the transfer function τ : 	 → [0,∞) by

τ(x) = min
{
t > 0 : ϕt (x) ∈ P

}
. (9)

Then the transfer map T : 	 → P is defined by T (x) = ϕτ(x)(x). We note that the restriction
of T to P is invertible.

We say that the rectangles R1, . . . ,Rp form a Markov system for � on the set 	 if

T (int(V s(x) ∩ Ri)) ⊂ int(V s(T (x)) ∩ Rj),

and

T −1(int(V u(T (x)) ∩ Rj)) ⊂ int(V u(x) ∩ Ri)

whenever x ∈ intT (Ri)∩ intRj . Any locally maximal hyperbolic set 	 has Markov systems
of arbitrarily small diameter (see [10, 40]). Furthermore, the map τ is Hölder continuous on
each domain of continuity, and

0 < inf
x∈	

τ ≤ sup
x∈	

τ < ∞.

Given a Markov system R1, . . . ,Rp for � on 	 we define a p × p matrix A = (aij )

with aij = 1 if intT (Ri) ∩ intRj �= ∅, and aij = 0 otherwise. We consider the set �A ⊂
{1, . . . , p}Z given by

�A = {
(· · · i−1i0i1 · · · ) : ainin+1 = 1 for every n ∈ Z

}
,

and the shift map σ : �A → �A defined by σ(· · · i0 · · · ) = (· · · j0 · · · ), where jn = in+1 for
every n ∈ Z. Given β > 1, we equip �A with the distance dβ defined by

dβ

(
(· · · i−1i0i1 · · · ), (· · · j−1j0j1 · · · )) =

∞∑
n=−∞

β−|n||in − jn|.

We define a coding map π : �A → P for the set 	 ∩ P by

π(· · · i0 · · · ) =
⋂
j∈Z

T −j (intRij ).

One can easily verify that π ◦σ = T ◦π . As observed in [10], it is always possible to choose
β so that the function τ ◦ π : �A → [0,∞) is Lipschitz.

We denote by �+
A the set of sequences (i0i1 · · · ) such that

(i0i1 · · · ) = (j0j1 · · · ) for some (· · · j−1j0j1 · · · ) ∈ �A,

and by �−
A the set of sequences (· · · i−1i0) such that

(· · · i−1i0) = (· · · j−1j0) for some (· · · j−1j0j1 · · · ) ∈ �A.

We note that �−
A is identified with �+

At , where At denotes the transpose of A, by the map

�−
A � (· · · i−1i0) �→ (i0i−1 · · · ) ∈ �+

At .
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We also consider the shift maps σ+ : �+
A → �+

A and σ− : �−
A → �−

A defined by

σ+(i0i1 · · · ) = (i1i2 · · · ) and σ−(· · · i−1i0) = (· · · i−2i−1).

Now let π+ : �A → �+
A and π− : �A → �−

A be the projections defined by

π+(· · · i−1i0i1 · · · ) = (i0i1 · · · ) and π−(· · · i−1i0i1 · · · ) = (· · · i−1i0).

Given x ∈ P we choose ω ∈ �A such that π(ω) = x. Let R(x) be a rectangle of the
Markov system which contains x. For each ω′ ∈ �A we have

π(ω′) ∈ V u(x) ∩ R(x) whenever π−(ω′) = π−(ω),

and

π(ω′) ∈ V s(x) ∩ R(x) whenever π+(ω′) = π+(ω).

Therefore, writing ω = (· · · i−1i0i1 · · · ), the set V u(x) ∩ R(x) can be identified with the
cylinder set

C+
i0

= {
(j0j1 · · · ) ∈ �+

A : j0 = i0

} ⊂ �+
A , (10)

and the set V s(x) ∩ R(x) can be identified with the cylinder set

C−
i0

= {
(· · · j−1j0) ∈ �−

A : j0 = i0

} ⊂ �−
A . (11)

Given a continuous function a : 	 → R and a Markov system for the flow � on 	, we
define the function Ia : 	 → R by

Ia(x) =
∫ τ(x)

0
a(ϕs(x)) ds,

with τ as in (9). We recall that a function A : 	 → R is said to be T -cohomologous to a
function B : 	 → R if there is a bounded measurable function q : 	 → R such that

A − B = q ◦ T − q .

Lemma 2 [7] Let a, b : 	 → R be continuous functions. Then the following properties are
equivalent:

1. a is �-cohomologous to b and (6) holds for every x ∈ 	;
2. Ia is T -cohomologous to Ib and

Ia(x) − Ib(x) = q(T (x)) − q(x) for every x ∈ 	.

It is also of interest to characterize the convergence of the Birkhoff averages of the flow
� in terms of the transfer map T .

Lemma 3 [7] Given a continuous function a : 	 → R, the following properties hold:

1. if a : 	 → R is Hölder continuous, then Ia is Hölder continuous on each domain of
continuity of τ ;
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2. if x ∈ 	, then

lim inf
t→∞

1

t

∫ t

0
a(ϕs(x)) ds = lim inf

m→∞

∑m

i=0 Ia(T
i(x))∑m

i=0 τ(T i(x))
,

and

lim sup
t→∞

1

t

∫ t

0
a(ϕs(x)) ds = lim sup

m→∞

∑m

i=0 Ia(T
i(x))∑m

i=0 τ(T i(x))
.

4.4 Construction of Auxiliary Measures

The following statement is a consequence of a construction described by Bowen in [11,
Lemma 1.6].

Lemma 4 For each i, j = 1, . . . , d there exist Hölder continuous functions

au
i , bu

i , d
u : �+

A → R and as
j , b

s
j , d

s : �−
A → R,

and continuous functions g+
i , h+

i , g−
j , h−

j , ρ± : �A → R such that

Ia+
i

◦ π = au
i ◦ π+ + g+

i − g+
i ◦ σ,

Ib+
i

◦ π = bu
i ◦ π+ + h+

i − h+
i ◦ σ,

Iv ◦ π = du ◦ π+ + ρ+ − ρ+ ◦ σ,

and

Ia−
j

◦ π = as
j ◦ π− + g−

j − g−
j ◦ σ,

Ib−
j

◦ π = bs
j ◦ π− + h−

j − h−
j ◦ σ,

Iw ◦ π = ds ◦ π− + ρ− − ρ− ◦ σ.

We write

Au = (
au

1 , . . . , au
d

)
, Bu = (

bu
1 , . . . , b

u
d

)
,

and

As = (
as

1, . . . , a
s
d

)
, Bs = (

bs
1, . . . , b

s
d

)
.

Given q± ∈ R
d , we define Hölder continuous functions U : �+

A → R and S : �−
A → R by

U = 〈q+,Au − α ∗ Bu〉 − d+du,

S = 〈q−,As − β ∗ Bs〉 − d−ds,
(12)

where

d+ = dimH K+
α − ts − 1 and d− = dimH K−

β − tu − 1. (13)

Now let μu be the equilibrium measure of U in �+
A (with respect to σ+), and let μs be

the equilibrium measure of S in �−
A (with respect to σ−). The following is an immediate

consequence of statements 2 and 3 in Proposition 5.
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Lemma 5 If (7) holds, then there exist q± ∈ R
d such that

Pσ+(U) = Pσ−(S) = 0,∫
�+

A

Au dμu = α ∗
∫

�+
A

Bu dμu,

and ∫
�−

A

Au dμs = β ∗
∫

�−
A

Bs dμs.

Given x ∈ P , let again R(x) be a rectangle of the Markov system which contains x.
We consider the measures in R(x) defined by

νu = μu ◦ π+ ◦ π−1 and νs = μs ◦ π− ◦ π−1,

using the vectors q± in Lemma 5. Finally, we define a measure ν in R(x) by ν = νu × νs .
Since μu and μs are Gibbs measures we have

ν(R(x)) = μu
(
C+

i0

)
μs

(
C−

i0

)
> 0,

with C+
i0

and C−
i0

as in (10) and (11). In the following sections we establish several properties
of the measure ν.

4.5 Lower Pointwise Dimension

Lemma 6 For ν-almost every x ∈ P we have

lim inf
r→0

logν(B(x, r) ∩ P )

log r
≥ dimH K+

α + dimH K−
β − dimH	 − 1.

Proof We follow arguments in the proof of Lemma 4 in [9].
By the variational principle for the topological pressure applied to the functions U and S

in (12), and Lemma 5, we obtain

hμu(σ+)∫
�+

A
du dμu

= d+ and
hμs (σ−)∫
�−

A
ds dμs

= d−.

By Shannon–McMillan–Breiman’s theorem and Birkhoff’s ergodic theorem, for each ε > 0,
μs -almost every ω+ ∈ C+

i0
, and μu-almost every ω− ∈ C−

i0
there exists s(ω) ∈ N (with ω+ =

π+(ω) and ω− = π−(ω)) such that for every n, m > s(ω) we have

d+ − ε < − logμu(C+
i0···in )∑n

k=0 du((σ+)k(ω+))
< d+ + ε,

and

d− − ε < − logμs(C−
i−m···i0)∑m

k=0 ds((σ−)k(ω−))
< d− + ε.
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For each sufficiently small r > 0, let n = n(ω, r) and m = m(ω, r) be the unique positive
integers such that

−
n∑

k=0

du((σ+)k(ω+)) > log r, −
n+1∑
k=0

du((σ+)k(ω+)) ≤ log r, (14)

and

−
m∑

k=0

ds((σ−)k(ω−)) > log r, −
m+1∑
k=0

ds((σ−)k(ω−)) ≤ log r. (15)

By Lemma 6.1 in [36] there exists ρ > 1 (independent of x = π(ω) and r) such that

B(y, r/ρ) ∩ P ⊂ π(Ci−m···in ) ⊂ B(x,ρr) ∩ P (16)

for some point y ∈ π(Ci−m···in ), where ω = (· · · i−1i0i1 · · · ). Moreover, by Lemma 1 in [7],
for ν-almost every y ∈ P there exist η = 2ρ and δ = δ(η, y, ε) > 0 such that

ν(B(y,ηr) ∩ P ) ≤ ν(B(y, r) ∩ P )r−ε

for every r < δ (since all probability measures in R
n are weakly diametrically regular). We

obtain

ν(B(x, r) ∩ P ) ≤ ν

(
B

(
y,2ρ

r

ρ

)
∩ P

)

≤ ν(B(y, r/ρ) ∩ P )

(
r

ρ

)−ε

≤ ν(π(Ci−m···in ))
(

r

ρ

)−ε

= μu(C+
i0···in )μ

s(C−
i−m···i0)

(
r

ρ

)−ε

≤ exp

[
(−d+ + ε)

n∑
k=0

du((σ+)k(ω+))

]

× exp

[
(−d− + ε)

m∑
k=0

ds((σ−)k(ω−))

](
r

ρ

)−ε

≤ exp[(log r + ‖du‖∞)(d+ − ε)]

× exp[(log r + ‖ds‖∞)(d− − ε)]
(

r

ρ

)−ε

,

and hence,

lim inf
r→0

logν(B(x, r) ∩ P )

log r
≥ d+ + d− − 2ε (17)

for ν-almost every x ∈ P .
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On the other hand, by Theorem 4.2 in [36] we have

dimH 	 = ts + tu + 1. (18)

Therefore, by (13) and (17) we obtain

lim inf
r→0

logν(B(x, r) ∩ P )

log r
≥ dimH K+

α + dimH K−
β − dimH 	 − 1 − 2ε,

and the result follows from the arbitrariness of ε. �

4.6 Upper Pointwise Dimension

Lemma 7 For every x ∈ K+
α ∩ K−

β ∩ P we have

lim sup
r→0

logν(B(x, r) ∩ P )

log r
≤ dimH K+

α + dimH K−
β − dimH 	 − 1.

Proof We follow arguments in the proofs of Lemmas 5 and 6 in [9]. Let x ∈ K+
α ∩ K−

β ∩ P .
Let also ω ∈ �A be such that π(ω) = x and consider the projections ω± = π±(ω). It follows
from Lemma 4 that

Ia+
i
(T k(π(ω))) = Ia+

i
(π(σ+(ω)))

= au
i (π+(σ k(ω))) + g+

i (σ k(ω)) − g+
i (σ k+1(ω))

= au
i ((σ+)k(ω+)) + g+

i (σ k(ω)) − g+
i (σ k+1(ω)),

with analogous identities for the functions Ib+
i

, Ia−
j

and Ib−
j

. Therefore,

∑n−1
k=0 Ia+

i
(T k(x))∑n−1

k=0 Ib+
i
(T k(x))

=
∑n−1

k=0 au
i ((σ+)k(ω+)) + g+

i (ω) − g+
i (σ n(ω))∑n−1

k=0 bu
i ((σ

+)k(ω+)) + h+
i (ω) − h+

i (σ n(ω))
,

and ∑n−1
k=0 Ia−

j
(T k(x))

∑n−1
k=0 Ib−

j
(T k(x))

=
∑n−1

k=0 as
j ((σ

−)k(ω−)) + g−
j (ω) − g−

j (σ n(ω))∑n−1
k=0 bs

j ((σ
−)k(ω−)) + h−

j (ω) − h−
j (σ n(ω))

.

On the other hand,

n−1∑
k=0

bu
i ((σ

+)k(ω+)) ≥ n infb+
i inf τ − 2‖h+

i ‖∞,

and
n−1∑
k=0

bs
j ((σ

−)k(ω−)) ≥ n infb−
j inf τ − 2‖h−

j ‖∞.

Since b+
i , b−

j > 0 and inf τ > 0 this ensures that the limits

∑n−1
k=0 Ia+

i
(T k(x))∑n−1

k=0 Ib+
i
(T k(x))

,

∑n−1
k=0 Ia−

j
(T k(x))

∑n−1
k=0 Ib−

j
(T k(x))
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exist if and only if the limits

∑n−1
k=0 au

i ((σ+)k(ω+))∑n−1
k=0 bu

i ((σ
+)k(ω+))

,

∑n−1
k=0 as

j ((σ
−)k(ω−))∑n−1

k=0 bs
j ((σ

−)k(ω−))
,

exist, in which case they are respectively equal.
By Lemma 3, if x ∈ K+

α ∩ K−
β ∩ P and ω ∈ �A are such that π(ω) = x, then given ε > 0

there exists r(ω) ∈ N such that for every n > r(ω) we have
∥∥∥∥∥
〈
q+,

n∑
k=0

(Au − α ∗ Bu)((σ+)k(ω+))

〉∥∥∥∥∥ < εn‖〈q+,Bu〉‖∞,

and ∥∥∥∥∥
〈
q−,

n∑
k=0

(As − β ∗ Bs)((σ−)k(ω−))

〉∥∥∥∥∥ < εn‖〈q−,Bs〉‖∞.

By Lemma 5, we have Pσ+(U) = 0 and since μu is a Gibbs measure, there exists D > 0
such that for every i0 = 1, . . . , p and n ∈ N we have

D−1 <
μu(C+

i0···in )
exp

∑n

k=0 U((σ+)k(ω+))
< D,

and thus,

μu(C+
i0···in ) > D−1 exp

[
−d+

n∑
k=0

du((σ+)k(ω+)) − εn‖〈q+,Bu〉‖∞

]
. (19)

Similarly, for every i0 = 1, . . . , p and n ∈ N we have

μs(C−
i−m···i0) > D−1 exp

[
−d−

m∑
k=0

ds((σ−)k(ω−)) − εm‖〈q−,Bs〉‖∞

]
, (20)

eventually taking a larger D. By the hyperbolicity of � on 	, and since infx∈	 τ > 0, there
exists r > 0 such that n(ω, r) > r(ω) and m(ω, r) > r(ω) (see (14) and (15)). Moreover,
by (16) there exists ρ > 0 (independent of x = π(ω) and r) such that

B(x,ρr) ∩ P ⊃ π(Ci−m···in ),

where n = n(ω, r) and m = m(ω, r). Combining (19) and (20) with (14) and (15) we obtain

ν(B(x,ρr) ∩ P ) ≥ ν(π(Ci−m···in )) = μu(C+
i0···in )μ

s(C−
i−m···i0)

≥ D−2rd++d−
exp(−εn‖〈q+,Bu〉‖∞ − εm‖〈q−,Bs〉‖∞),

for every sufficiently small r > 0. On the other hand, it follows from (14) and (15) that

−n infdu > log r, −m infds > log r.

Therefore, for every x ∈ K+
α ∩ K−

β ∩ P we have

lim sup
r→∞

logν(B(x, r) ∩ P )

log r
≤ d+ + d− + ε

(‖〈q+,Bu〉‖∞
infdu

+ ‖〈q−,Bs〉‖∞
infds

)
.
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Since ε can be made arbitrarily small, we obtain

lim sup
r→∞

logν(B(x, r) ∩ P )

log r
≤ d+ + d−.

Together with (13) and (18) this yields the desired result. �

4.7 Proof of Theorem 1

As a consequence of the above lemmas we have the following result.

Lemma 8 If (7) holds, then there exists a probability measure ν in P such that ν(K+
α ∩

K−
β ∩ P ) = 1,

lim
r→∞

logν(B(x, r) ∩ P )

log r
= dimH K+

α + dimH K−
β − dimH 	 − 1 (21)

for ν-almost every x ∈ P , and

lim sup
r→∞

logν(B(x, r) ∩ P )

log r
≤ dimH K+

α + dimH K−
β − dimH 	 − 1 (22)

for every x ∈ K+
α ∩ K−

β ∩ P .

We can now establish our main result.

Proof of Theorem 1 Let ν be the measure in Lemma 8. It follows from (21) (see for example
[1, Theorem 2.1.5]) that

dimH ν = dimH K+
α + dimH K−

β − dimH 	 − 1,

where

dimH ν = inf
{
dimH Z : ν(Z) = 1

}
.

Since ν(K+
α ∩ K−

β ∩ P ) = 1 we obtain

dimH (K+
α ∩ K−

β ∩ P ) ≥ dimH K+
α + dimH K−

β − dimH 	 − 1.

On the other hand, it follows from (22) (see for example [1, Theorem 2.1.5]) that

dimH (K+
α ∩ K−

β ∩ P ) ≤ dimH K+
α + dimH K−

β − dimH 	 − 1,

and thus,

dimH (K+
α ∩ K−

β ∩ P ) = dimH K+
α + dimH K−

β − dimH 	 − 1.

Since K+
α ∩K−

β is locally diffeomorphic to a product between K+
α ∩K−

β ∩P and an interval,
we obtain

D(α,β) = dimH K+
α + dimH K−

β − dimH 	.
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By Lemma 1, (18), and statement 1 in Proposition 5 we conclude that

D(α,β) = dimH (K+
α ∩ V u(x)) + dimH (K−

β ∩ V s(x)) + 1

= dimuK
+
α + dimwK−

β + 1

= max

{
hμ(�)∫
	

v dμ
: μ ∈ M�(	) and P+(μ) = α

}

+ max

{
hμ(�)∫
	

w dμ
: μ ∈ M�(	) and P−(μ) = β

}
+ 1.

The second statement is now an immediate consequence of the last statement in Proposi-
tion 5. �
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